

Axial Leaded Ceramic Gas Discharge Tube SC2E8-90ML RoHS Compliant

Basic Information

. Place of Origin: Shenzhen, Guangdong, China

. Brand Name: SOCAY

· Certification: UL,REACH,RoHS,ISO

Model Number: SC2E8-90ML • Minimum Order Quantity: 1000PCS • Price: Negotiable 7-12 work days • Delivery Time:

Product Specification

. Key Words: Lightning Arrester

• Footprint: φ8*6mm • DC Spark-over Voltage 90V±20%

@100V/µs:

• Max. Spark-over Impulse 500V Voltage @100V/µs:

• Max. Spark-over Impulse 600V Voltage @1KV/µs:

Min. Insulation Resistance: 1GΩ (@50V)

• Nom. Impulse Discharge 10KA

Current:

• Max. Impulse Discharge 20KA

Current:

• Usage: Lightning Protection RoHS Gas Discharge Tube, • Highlight:

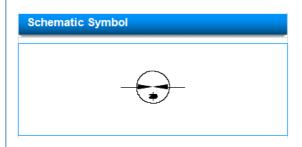
Gas Discharge Tube SC2E8-90ML, **Axial Leaded Ceramic Discharge Tube**

More Images

Product Description

90V±20% Axial Leaded Ceramic Gas Discharge Tube SC2E8-90ML, RoHS Compliant

DATASHEET: SC2E8_v91.1.pdf


Selection principles for ceramic gas discharge tubes

- 1. The prerequisite for the addition of ceramic gas discharge tubes is that the lower limit of the DC breakdown voltage of the ceramic gas discharge tube must be higher than the maximum normal operating voltage in the circuit, so that it cannot affect the normal operation of the circuit.
- 2. The overholding voltage of the ceramic gas discharge tube should be as high as possible to ensure that the working voltage in the circuit will not cause continuous conduction. When the overvoltage in the circuit disappears, ensure that the ceramic gas discharge tube is extinguished in time, otherwise it will affect the normal operation of the circuit.
- 3. Ensure that the impact breakdown voltage of the ceramic gas discharge tube must be lower than the highest instantaneous voltage that the circuit can withstand.
- 4. According to the intensity of the impulse current that may enter the line, determine the impulse current resistance capability that the selected discharge tube must achieve.
- 5. When necessary, the ceramic gas discharge tube should be equipped with an appropriate short-circuit device, FS device, also called a failure protection device.

L	Markin g	Spark-	rk- Impulse Spark- over Voltage		ınsulation Resistan	Maximum Capacitanc e	Arc Voltag e	Service Life			
								Impulse Discharge	Max Impulse Discharg e Current	Nominal Impulse Discharge Current	Impulse Life
		@100V/ S	I. I	@1KV/ µs		@1MHz	@1 A	@8/20μs ±5 times	@8/20µs 1 time	@50Hz 1 Sec 10 times	@10/1000 µs 300 times
\$C2E8-75M \$C2E8-75ML \$C2E8-75MSMD	SOCAY 75M	75V±20%	500V	600V	1 GΩ (at 25V)	1.5pF	~15V	10KA	20KA	10A	100A
SC2E8-90M SC2E8-90ML SC2E8-90MSMD	SOCAY 90M	90V±20%	500V	600V	1 GΩ (at 50V)	1.5pF	~15V	10KA	20KA	10A	100A
SC2E8-150M SC2E8-150ML SC2E8-150MSMD	SOCAY 150M	150V±20%	500V	600V	1 GΩ (at 50V)	1.5pF	~20V	10KA	20KA	10A	100A
\$C2E8-230M \$C2E8-230ML \$C2E8-230MSMD	SOCAY 230M	230V±20%	600V	700V	1 GΩ (at 100V)	1.5pF	~20V	10KA	20KA	10A	100A

\$C2E8-250M \$C2E8-250ML \$C2E8-250MSMD	SOCAY 250M	250V±20%	700V	800V	1 GΩ (at 100V)	1.5pF	~20V	10KA	20KA	10A	100A
\$C2E8-300M \$C2E8-300ML \$C2E8-300MSMD	SOCAY 300M	300V±20%	800V	900V	1 GΩ (at 100V)	1.5pF	~20V	10KA	20KA	10A	100A
\$C2E8-350M \$C2E8-350ML \$C2E8-350MSMD	SOCAY 350M	350V±20%	800V	900V	1 GΩ (at 100V)	1.5pF	~20V	10KA	20KA	10A	100A

Product Chara	cteristics					
Materials	Leaded Device: N Tinplated wires Surface Mount: Dull T	lickel-plated with in-plated				
Product Marking XXX -Nominal voltage M - 10KA H - 20KA						
Glow to Arc Transition Current	< 0.5 Amps					
Glow Voltage	~60 Volts					
Storage and Operational Temperature	-40 to +90°C					
	SC2E8-XXXML	~1.5g				
Waight	SC2E8-XXXHL	~1.6g				
Weight	SC2E8-XXXM/H	~1.35g				
	SC2E8-XXXM/HSMD	~1.5g				
Climatic category (IEC 60068-1)	40/ 90/ 21					

About GDT

Gas discharge tubes work according to the gas physics principle of high-efficiency arc discharge. From an electrical perspective, a gas discharge tube is equivalent to a pressure-sensitive switch. Once the voltage applied to the discharge tube exceeds the breakdown voltage, an arc will form in the sealed discharge area within nanoseconds. High surge current handling capabilities and an arc voltage that is almost independent of current short circuit overvoltages. When the discharge ends and the discharge tube goes out, the internal resistance immediately returns to several 100 $M\Omega$. Therefore, gas discharge tubes meet almost all the requirements of the protected components. It can reliably limit overvoltage within the allowable value range, and under normal operating conditions, due to its high insulation resistance and low capacitance characteristics, the discharge tube will essentially have no impact on the protected system.

Classification of ceramic gas discharge tubes

- 1. According to the number of electrodes, commonly used gas discharge tubes are divided into diode discharge tubes and triode discharge tubes. Most of their packaging materials are ceramics, so they are called ceramic discharge tubes.
- 2. According to the appearance size, commonly used gas discharge tubes are divided into chip discharge tubes and plug-in discharge tubes.
- 3. According to the product pulse voltage, commonly used gas discharge tubes are divided into conventional pulse discharge tubes and low pulse discharge tubes.

sylvia@socay.com

socaydiode.com